
©

cO

©

©
62

)

/N-72_-

DEPARTMENT OF MATHMATICS AND STATISTICS

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529-0247

A MULTIGROUP METHOD FOR THE CALCULATION OF NEUTRON

FLUENCE WITH A SOURCE TERM

By

Dr. J. H. Heinbockel, Principal Investigator
And

M. S. Clowdsley, Graduate Student

Department of Mathematics and Statistics

FINAL REPORT

For the period ending September 30, 1998

Prepared for

NASA Langley Research Center

Attn.: Judy L. Shinn
Technical Officer

Mail Stop 188B

Hampton, VA 23681-0001

Under

NASA Grant No. NCC 1-42

ODURF Project No. 171941

August 1998



DEPARTMENT OF MATHMATICS AND STATISTICS

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529-0247

A MULTIGROUP METHOD FOR THE CALCULATION OF NEUTRON

FLUENCE WITH A SOURCE TERM

By

Dr. J. H. Heinbockel, Principal Investigator
And

M. S. Clowdsley, Graduate Student

Department of Mathematics and Statistics

FINAL REPORT

For the period ending September 30, 1998

Prepared for

NASA Langley Research Center

Attn.: JudyL. Shinn
Technical Officer

Mail Stop 188B

Hampton, VA 23681-0001

Under

NASA Grant No. NCC 1-42

ODURF Project No. 171941

Submitted by

Old Dominion University Research Foundation
800 West 46 d' Street

Norfolk, VA 23508

August 1998
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Introduction

Previous accomplishments resulting from the research Grant NCC 1-42 have been

numerous. These accomplishments are summarized in the appendices A,B and C of this

report. The Appendix A lists publications that have resulted from the varied research

efforts associated with this grant. The Appendix B lists graduate students who have been

associated with this grant, their research efforts and their degree accomplishments. The

Appendix C is a summary of efforts involving Green's Functions.

Current research on Grant NCC 1-42 involves the development of a multigroup method

for the calculation of low energy evaporation neutron fluences associated with the Boltz-

mann equation. This research will enable one to predict radiation exposure under a variety

of circumstances. Knowledge of radiation exposure in a free-space environment is a neces-

sity for space travel, high altitude space planes and satellite design. This is because certain

radiation environments can cause damage to biological and electronic systems involving

both short term and long term effects.

By having apriori knowledge of the environment one can use prediction techniques

to estimate radiation damage to such systems. Appropriate shielding can be designed

to protect both humans and electronic systems that are exposed to a known radiation

environment. This is the goal of the current research efforts involving the multi-group

method and the Green's function approach.

Reference [1] presents a short history of the study of the propogation of space radia-

tion through matter, the development of space-radiation physics and protection techniques.

This reference outlines major radiation studies and their results. The accurate prediction

techniques for dose fields requires either Monte Carlo type solutions, which require a great

amount of computational time, or a study of the Boltzmann equation under various cir-



cumstances. The Boltzmann equation doesnot lend itself readily to analytical solutions

and so various types of numerical solutions have been developed. One such numerical

solution is the HZETRN codedevelopedby Wilson et.al., reference[1]. This codehas the

ability to predict dose fields in simulated tissuebehind a shield for high chargeand high

energyparticles. Flux predicitions by HZETRN arebasedupon a straight-ahead transport

of evaporation neutrons with one dimensionalangular transport. In this researchwe in-

vestigatethe transport of evaporationneutronsthrough a shield-target environment based

upon sourceterms generatedby the HZETRN code.

Formulation of Transport Equations

We define the differential operator

[ O i) Sj(E) + aj(E)] ¢(x,E)B[®]= G OE
(1)

o¢(x, E:) o
- Ox OE [Sj(E)¢(x'E)I+aj(E)¢(x'E)

and consider the Boltzmann equation from reference [1]

B[¢j = &k(E,e')¢k(x,E')aE' (2)
k

where Cj is the differential flux spectrum for the type j particles (j = n neutrons or

j = p protons), Sj(E ) is the stopping power of the type j particles and crj(E) is the total

cross section. The term fjk(E, E') is a macroscopic differential energy cross section for

redistribution of particle type and energy. We write

fjk(E,E') = Epflaz(E')fjk,fl(E,E')

where fjk,13(E, E t) is an elastic collision term, aft is a microscopic cross section and p/_ is

the number density of fl type atoms per unit mass. The collision terms are expressed as

e d

where ffk,fl represents evaporation terms and fSk,fl represents direct cascading terms. The

evaporation process dominates over the low energies (E < 25 Mev) and the direct cascading

effect dominates over the high energy range (E > 25 Mev). The equation (2) is written as

BIer] : 'pf3ryz(E )(f]k,_ + fYk,/3)_k(x,E') dE'' (3)
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For j = n we write equation (3) in the operator form

B[¢1= Io[¢]+ Zd[¢]+ Ie[¢p]+ Ze[ep] (4)

where ¢ = On and Ie,Id are integral operators. Let ¢d denote the solution to the transport

equation

B[¢d]= Idled] + Zd[¢p] (5)

which is valid over all energ-y ranges. The solution to equation (4) is then ¢ = O¢ + Cd

where ¢¢ is the neutron flux due to evaporation and Cd represents neutron flux due to

direct cascading effects. The equation (4) can be expressed in the form

B[¢e] + B[¢d] = Ie[¢e] + I_[Od] + Id[¢e] + Idled] + Id[Cp] + I_[¢p]. (6)

Using the assumption that the numerical solution to equation (5) is readily obtainable

from the the HZETRN code, reference [6], and that Id[¢e] _, 0, the equation (6) reduces

to

B[¢_]= z_[¢_]+ I_[¢d]+ r_[¢p] (7)

The stopping power Sj(E) = 0 for neutrons and so the equation (7) reduces to the integro-

differential transport equation with source term

[0 F __+°(E) Oo(x,E)=_ fs,ft(E,E')¢_(x,E') dE'+g(E,x) (8)

which represents the steady state low energy neutron fluence Ce(x,E) at depth x and

energy E. The various terms in equation (8) are energy E with units of (Mev), depth in

medium is x with units of (g/cm2), Ce(x, E) (#particles/cm 2 - Mev) is the fluence and

g(E,x) = I¢[¢d] + Ie[¢p] (#particles/g-- Mev) is a source term. In addition, the equation

(8) contains the scattering terms

fs,ft = Psa_(E')f_k,ft(E, E')

with units of cm2/g - Mev. The limits of integration (E, E/aft) represent cut off values for

neutron production because secondary neutrons produced have approximately the same

energy as the projectile primary neutrons. The term a z is defined as the ratio

a_= (AT_--I) 2\AT_ + 1 (9)
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and is a constant lessthan 1 whereAT, is the atomic weight of the ith type of atom being

bombarded. The quantity a has units of (cm2/g) is a macroscopic cross section given by

= (lO)
J

where pj is the number of atoms per gram and aj is a microscopic cross section in units

of cm2/atom. The reference [2] provides approximate Maxwellian averages of cross section

values in barns. These values are listed in Table 1 along with other parameters of interest

for selected elements.

Other units for equation (8) are obtained from the previous units by using the scale

factor representing the density of the the material in units of g/cm 3.

Table 1. Parameter Values for Selected Elements

Cross Section Density

Element Symbol

Lithium Li

Carbon C

Aluminium A1

Calcium Ca

Iron Fe

Lead Pb

AT,

7

12

27

40

56

207

barns* g/cm 3

1.050 .534

4.739 3.52

1.348 2.7

2.99 1.54

11.40 7.85

11.194 11.342

* Maxwellian averages (elastic)

o_

.563

.716

.862

.905

.931

.981

Mean Value Theorem

Through out the following discussions we employ the following mean value theorem

for integrals.

MeanValueTheorem For ¢(z),f(x) continuous over an interval a _< x _< b such that

(i) ¢(z) does not change sign over the interval (a,b), (ii) ¢(z) is integrable over the interval

(a, b), and (iii) f(x) is bounded over the interval (a, b), then there exists at least one point

such that

f(x),(x)ex = ,(x)ex a < _<b

4



Multi-group method

We consider the case/3= 1which representsneutron penetration into a singleelement

and let Ce= ¢. We integrate the equation (8) from Ei to Ei+l with respect to the energy

E to obtain

where

and

f fE,÷LE,+, O¢(z, E) dE + a(E)O(x, E) dE = Ii+ (i (11)

d E_ O X J E_

rE,+, fE/aIi = fs,_(E, E')¢(x, E') dE'dE (12)
JEi JE

Ei+l_i = g(E,x) dE. (13)
J EL

As a first approximation test case we use the approximate source and scattering terms

g = g(E x) = KEe -E/T, with K and T constants, and fs,z(E E') = °'(E')re-T_E'-S)
, j __e(l_ O_)TEI SO

that the equation (13) is easily integrated to obtain

_i = KT (Eie-E_/T-- Ei+le-E_+_/T) + KT2 (e-E_/T--e-E_+_/T). (14)

We define the quantity

Ei+,Oi(x) = ¢(x,E) dE (15)
J E_

and write the equation (11) in terms of the O_(x) terms as follows. In the first term in

equation (11), we interchange the order of integration and differentiation to obtain

f , dOi(x)E,+, O¢(x E) dE- (16)

J E, Ox dx

Using one of the several mean value theorems for integrals, the second term in equation

(11) can be expressed as

/E Ei+I o¢(x, E) dE = _" _i(x) (17)
i

where "5 = a(Ei + O(Ei+l - Ei)), for some value of 0 between 0 and 1.

For the term Ii in equation (12) we interchange the order of integration as illustrated

in the figures l(a)(b). The integration of equation (12) depends upon the energy partition

selected. For example, the figure l(b) illustrates an energy partition where Ei+t < Ei/a

and in this case we can write the equation (12) as



Ii H dEdE' + H dEdE' + t H dEdE I, (18)
JE':Ei :E i JE':Ei+L JE:E_ JE':E_/a JE:aE'

where H -- /s(E, E')_(x, E'). The figure l(c) depicts the case where Ei+t = Ei/c_ exactly

for all i. In this special case the equation (12) reduces to

JE =E_ =Ei JE'=E_+L JE=aE'

The integrand H can be integrated with respect to E and the results expressed in terms

of the quantities

b
F(b, a) = re rE dE = e rb - e TM

_ -Tz'
and G(E') 1 -- e -(l-a)rE'

and we can write equation (19) in the form

E,+ tIi = G(E')F(E',Ei)¢(x,E') dE'
JE':Ei

(20)

E,+i/a+ G(E')F(Ei+I,_E')¢(x,E') dE'.

JE':Ei+t

To illustrate the basic idea behind the multigroup method we use one of the many mean

value theorems for integrals and write the equation (20) in the form

Ii : G(E*)F(E[,Ei)_i + G(E_+l)F(Ei+t,c_Ei*+J_i+l.

where Ei < E* < Ei/a and Ei+l < Ei*+t < Ei+l/ot. The special partitioning of the energy

as illustrated in the figure 1(c) enables us to obtain from the equation (11) a system of

ordinary differential equations

d

dx

_0

(PN-2

(hN-_

all a12

a22 a23

aN-1,N-1 aN-1,N

aNN

_o

,_.

_N-2

L_N-_

_0

+

_N-2

(21)

E_ _ •where ai,i = G( i )F(Ei , Ei) -_" and ai,i+l = G(Ei+t)F(Ei+l, aEi+t). We further assume

that for large values of N that Oi = 0 for all i _> N. This gives rise to the system of ordinary

differential equations

d_- AT+[
dx



subject to the initial conditions _'(0) = _. Here _" is the column vector

col(_0,¢Pl,...,_N_t), A is an N by N upper triangular matrix and _ is the column

vector col(_0,_t,...,_N_l).

In a similar manner the integrals in equation (18) can be evaluated for other kinds of

energy partitioning and we will obtain a system of equations having the form of equation

(21). However, for these other energy partitions the structure of the N by N square

matrix A will change. It remains upper triangular but with more off diagonal elements

which depend upon the energy partition. For our purposes the system of equations (21)

will be used to discuss some of the problems associated with the multigroup method.

We construct the energy partition

{Eo,Eo/ , Eo/ 2, . . . ,Eo/ N},

where E0 = 0.1 Mev, for the selected elements of lithium, aluminum, and lead. The table

2 illustrates integer values of N necessary to achieve energies greater than 30 Mev.

Table 2. Energy Partition Size N

Element a

Lithium 0.563

Aluminium 0.862

Lead 0.981

N 0.1/_ N

i0 31.53

39 32.75

298 30.38

For energy partitions where Ei+l < Ell cz the values of N will be larger and when

Ei+l > Ei/o_ the values of N will be smaller. The cases where Ei+t > Ei/c_ give rise to

situations like that illustrated in the figure l(d). In this figure the area At is associated

with the integral defining Oi and the area A2 is a remaining area associated with an

integral which is some fraction of the integral defining _i+1 which is outside the range of

integration and so some approximation must be made to define this fractional part. This

type of partitioning produces errors, due to any approximations, but it has the advantage

of greatly reducing the size of the N by N matrix A.

The case of neutron penetration into a composite material gives rise to the case where

/3 > 1 in the equation (8). In this special case the equation (12) becomes

= fsj (E, E')¢(z, E') dE'dE.
Ii _. dEi

J



We select a = max(ai, a2,..., aj) and construct the energy partition where Ei+l = Ei/a.

We then obtain a system of differential equations having the upper triangular form

d

dx

o0]
O1 i

.ON-IJ

"all a12 a13 • • • alN

a22 a23 • • • a2N

a33 • • •

aNN

0o

O1

ON-_

+

G0

E1

__N--1

(22)

Energy Partition for Finite Values of N

Consider the case of neutron fluence in a single shield material with the energy parti-

tioning as illustrated in the figure 1(c). This is the case where successive energy values are

given by Ei+l = Ei/a for all values of the index i as i ranges from 0 to N. We select a finite

value for N, say N = 10, and select E0 large enough such that the assumption 0N = 0

holds true• The system of equations (21) is then a closed system and we can solve for

the terms {00,..., 0N-i}. If we march backwards N energy partitions from the original

starting value E0, we obtain a new value for E0, such that the final value 0N equals the

old starting value 00. The term aN, N+ION in the equation (21) is now known and can

be moved into the right hand side of the system along with the fN-1 term. Continuing

in this manner we can define groups of energy partitions of size N, where in each group

Ei+l = E_/a are the energy values considered. The starting value E0 changes for each

group and, except for the highest energy group, we will have the value of 00 from a higher

group equal to the value of 0 N from the lower energy group. The grouping scheme is illus-

trated in the Figure 2. In this way, we can break a large energy partitioning into groups

of N equations, where the highest energy group of equations is solved first and the lowest

group of equations is solved last. The nonzero elements ai,j for the matrix A in equation

(22) consists of the diagonal elements and the first diagonal above the main diagonal. This

gives the values

aii :G(E_)F(E*, Ei) --

ai,i+l ----C (Ei%l)Y (Si+l, olEi*+l )

for i = 1,.., N where E* and Ei+ 1 are selected mean values associated with the lower

and upper triangles illustrated in the figure 1(c). These mean values vary with energy and

were selected as

E_ =Ei + Ol(Ei+l - El)

Ei*+l =Ei+I -}- #2 (Ei+2 - Ei+I)



where

and

where

ol={

02= {

71 =0.93

_l + mll(E - Ell) -- 61

71 + m12(E - El!.) - 61

73 + ml3(E - E22) - 51

^12+ m21(E - Ell)

72 + m22(E - Ell)

74 + m23(E - E'22)

roll =0.0030485

E > Etl

E22 < E < Ell

E < E22

E > Eli

E22 < E < Eli

E < E22

rn2t =0.004355

72 =0.90 ml2 =0.2490258 m22 =0.249026

73 =0.30 rn13 = - 0.3937186 m23 = - 0.255920

74 =0.27 Ell =3.037829 E29 =0.5079704

and 51 has the values, 0.0 for lead, 0.02 for aluminum, and 0.075 for lithium. In addition,

we set 03 = 01 and 04 = 02 because of the symmetry of the triangles involved in the

calculations. The above values of 0 for the mean value theorems were determined by trial

and error so that the multigroup curves would have the correct shape. These selections

for the mean values are not unique.

Solution Method Shield Material

We consider the energy partition Ei+l = Ei/a and the resulting system of equations

(21). The solution of this system of equations is obtained by first solving the last equation

of the system. This equation has the form

dC_N_l
-- aNNON_ 1 + _N_I(x), ON_l(0) = 0

dx

and has the solution

( /0x )dPN_I(X) = eaNNx dPN_I(0) + _N_l(S)e--aNNsdS

which implies

xo+Ax
N /k X AK I _ 8_N-t(xo + Ax) = ea_v "VN-tkxO) + e a'¢N(x°+Az) _N_l(s)e -aNN ds.

,J 2C0

We then consider each of the remaining equations above the last equation. A typical

ectuation from this stack has the form

dd_ i
-- = alibi + fi(z), d_i(O ) : 0
dx

9



where fi(x) = 4i(*) +ai,i+t¢Pi_-l(x) is known since _i+l(z) is calculated before q)i(x). This

typical equation has the solution

( /0 )*_(.) = aa''x _i(o) + k(s)_ -a''" ds

which implies

xo+AX(I)i(xo + Ax) = ea"&_(Pi(zo) + e a"(x°+A_) fi(s)e -a''_ ds
J x 0

Another Viewpoint for the Resulting System of Equations

The equations resulting from the energy partitioning of each group can be expressed

as a system of ordinary differential equations

d_i
-- +-g_i = Ii + _i,
dx

i= 1,2,...,N-1

which is equivalent to the vector system of ordinary differential equations

subject to the initial condition _-(0) = 0. Here _"is the column vector col((I)0, 4pt,..., (I)N_ i),

A is a N by N upper triangular matrix, and _ is the column vector col(_0,{t,...,_g-t)

From the solution of this system of ordinary differential equations we calculate the average

fluence over each energy interval

1 fE,+l- - ¢(x) d_.
Qgi-avg Ei+l -- Ei JEt

Fundamental matrix solution

Let Y(x) = eAx denote the fundamental matrix solution defined by the matrix differ-

ential equation
dY
--=AY, Y(O) = I
dx

where I is the N by N identity matrix and A is an upper triangular matrix. The solution

of the system of equations (21) can then be represented in the form

f0 f0g(x) = Y(x) Y-l(s)'b ds = Y(x- s)'b ds (23)

10



The exponential matrix Y(x) satisfies the properties that

AY(z) =Y(x)A

y(-_-) =y-_(x) (24)

and Y(z + s) =Y(x)Y(s)

Consequently, for b constant, the solution given by equation (24) can be represented in the

form

_'(x) = (Y(x)- I)A-t'b. (25)

The solution, as given by equation (25) can also be expressed in terms of a Green's function

for discrete systems. We rewrite the solution system (25) in the equivalent form

y(x + h) =(Y(x + h)- I)A-l-b

"_(a: + h)=(Y(x)Y(h) - I)d-t'b
(26)

_(x + h) =Y(h)(Y(x) - Y(-h) + I- I)A-Fb

_(x + h) =Y(h)_'(x) + (Y(h)- I)a-l-b.

If b is not constant, but a function of x, then the solution is left in the integral form of

equation (23) and becomes

_(x) = Y(x) Y-_(_)_(_) d_.

In this case, we have

_(x + h) = Y(_ + h) f_+h
J0

j[x x ÷ h
Y-t(s)'b(s)ds = Y(h)_(x) + Y(z)Y(h) Y-t(s)-b(s)ds.

Calculation of the Exponential Matrix Exp(Ax)

The fundamental matrix solution Y(x) = eAx can be calculated from the Putzer

algorithm, reference [3]. This algorithm states that for A an n x n matrix with eigenvalues

)_1, ,_2, • • • ,Xn, the exponential matrix is given by

n--1

tax= _ _+_(_)Pj
j=0

where

Po = I, Pj = II[.=t(A - ,Xk!), j = 1,...,n

11



and rt(z),..., rn(z) are solutions of the triangular system

drt
-- =A1 rl rt(0) = 1
dx

drj

%-y + Aj r3(x),  j(0) = 0
for j = 2,..., n. Here each eigenvalue is listed in an ordered form from high to low values

and multiplicity of eigenvalues is permissible.

Numerical Solution

The solutions obtain from the system of equations (21) or (22) depend upon the

selection of mean values associated with each energy interval. The selection of these mean

values is determined by examing the numerical solution in certain special cases. We obtain

a numerical solution of equation (8) in the special case given by 9 = g(E, x) = KEe -E/T

where K (#particles/cm 3 Mev) and T (Mev), are constants. We construct the solution

over the spatial domain x >_ 0 and energy range .1 _< E <__80 Mev. This domain is

discretized by constructing a set of grid points xi = lAx and Ej = jAE for some grid

spacing defined by Ax and AE values. For i,j integers we define ui,j = ¢(zi, Ej), then

the transport differential-integral equation (8) can be written in a discrete form. We use

the starting values u0,j = 0 and v0,j = 0. For the first step in Ax we write

ul,j = AxKEje -E_/T (27)

followed by the numerical calculation of
' E

E Ej/a a(E')re -r(E - _)vi, = 1 - "E' u(xi, E') dE', (2S)
J

when i = 1. After each numerical step the integrals of the type vi,j given by equation (29)

are evaluated using Simpson's 1/3 rule. We evaluate the equation (28) for j = 0, 1,..., we

then use a two step algorithm in a repetitive fashion to advance the solution. For values

of a near one the numerical solution of equation (8) requires that AE become small. For

numerical accuracy we must have Ax << AE. The low energy spectrum then becomes

difficult to calculate without special procedures, reference [1]. In this case we use a two

step modified Euler predictor-corrector scheme, references [4],[5], which is defined by

Second step: ft,j =Vl,j + Eje -Ej - aut,j

Third step:

u t,j + A x f l,j j = 0
'U2'J = ½ ('Ul,j_ 1 -_-'Ul,j+l ) -I- AX ft,j j > 0

f2,j =v2,j _- Eje -E_ -- cru2,j

u3,j =ul, j nc 2Ax f2,j

(29)

12



The second step isan adaption of the Fredrichsmethod from reference[4].The third step is

a centraldifferencesecond order step in Ax. After each I00 such applicationsof the above

numerical two step algorithm, we apply the followingstabilitycorrection as suggested in

reference [5].

f3,j ----v3,j + Eje -s_ - a u3,j

1 (30)

u3,j ='_ (u3,j + u2,j) + Ax f3,j

Recurrsive Solution

In the special case g(E,x)=g(E), we assume a solution to equation (8) of the form

¢(x, E)= _ ¢,(E)f,(z)= _(E)A(x)+ ¢2(E)f_(x)+ ... (31)
n----i

We substitute this series into the equation (8) and obtain a solution by requiring that

,I(E) =KE)
fI(x) + a fl(x) --1

[_/_ (32)@r_+l(E) -- fs(S,E')dpn(E')dE' n = 1,2,3,... f_(x) +af,_(x) =fn-l(x)
--JE

where the differential equations are subject to the initial condition that fn(O) = 0 for all n.

Here the ¢,_(E) terms are defined recurrsively and take a great deal of computational time

for large values of n. The differential equations have the solutions given by the recurrsive

relations

A(x) =-i(1 - e-_)
(7

/:fn(X) = fn_l(u)e -°(z-u) du

(33)

which are easily evaluated for as large an n as desired. We find numerically that If,_(x)l

decreases with increasing n when x is less than 1 and increases for x > 1 so that the series

solution does not converge in this case. For Izl less than or equal to one we calculate the

solution given by equation (33) for terms through n = 5 and n = 6 and compared them

with the numerical solution. The mean values associated with the numerical solution of

equations (21) and (22) where then adjusted in order that all solutions agree for this

special circumstance. We then used these same mean values which where associated with

numerical source terms as provided by the HZETRN code.

Comparison of Multigroup and Other Solutions

The numerical solutions and recurrsive solutions are compared with the multigroup

solution for neutron penetration in lithium, aluminum and lead medimns for the case

13



n = 2. The results are illustrated in the figures 3,4, and 5. Excellent agreement is obtain

in these cases. In these figures, the solid line represents the nmnerical solution. The

circles represent the recursive solution and the triangles represent the multigroup solution.

The various curves were calculated for depths of x = 0.1, 0.5, 1.0, 5.0, 10.0, 50.0 and 100.0

centimeters. Similarly, the figures 6,7 and 8 illustrate the multigroup method in the case

n = 10 for neutron penetration into lithium, aluminium and lead respectively.

The multigroup method has a huge advantage in the computational time needed to

calculate the solution. The multigroup method takes less than one minute of computational

time while the other methods require many hours of computational time.

Application for Al- H20 shield-target configuration.

We now apply our previous development to an application of the multigroup method

associated with an aluminium-water shield-target configuration. In particular, we consider

the case where the source term g(E,x), in equation (8), represents evaporation neutrons

produced per unit mass per Mev and is specified as a numerical array of values corre-

sponding to various shield-target thicknesses and energies. The numerical array of values

is produced by the radiation code HZEBIO, which is a modification of the radiation code

HZETRN developed by Wilson, et. al., reference [6]. The numerical array of values are

actually given in the form g(Ei, xj, Yk) in units of particles/gm - Mev, where Yk represents

discrete values for various target thicknesses of water in gm/cm 2, xj represents discrete

values for various shield thicknesses of aluminium, also in units of gm/cm 2 , and Ei repre-

sents discrete energy values in units of (Mev). We use these discrete source term values in

the following way. We consider first the solution of equation (8) solved by the multigroup

method with no target material i.e. all shield material with target thickness y = 0. We

next consider the cases 2,3,... of discrete shield thickness x2,x3, ... and apply the multi-

group method to the solution of equation (8) applied to all target material y > 0. For

each xi-value considered, the initial conditions are obtained from the previous solutions

generated where y = 0. This represents the application of the multigroup method to two

different regions. Region 1 of all shield material and region 2 of all target material. We

then continue to apply the multigroup method to region 2 for each discrete value of shield

thickness, where the initial conditions on the start of the second region represents exit

conditions from the shield region 1. This provides for continuity of the solutions for the

fluence between the two regions. In this way we develop a series of graphs for fluence vs

energy associated with various shield thickness.
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In our application of the multigroup method we consider the case where the source

term g(E, x), the scatteringterm fs(E, E _)and crosssectiona(E) are allgiven numerically

(obtained from the above HZETRN code).

For a singleshieldmaterial we solve

+a(E) ¢(x,E) = +g(E,x) (34)

Integration of equation (34) from Ei to Ei+l produces

[Ei+ tE,+, OCpd E + a(E)¢(x,E)dE =
J Ei 6qX J Ei

i WE,

We define the quantities

(I)i = [Ei+l.

JE_

g(E,x) dE

(35)

d(P i
+ -_ (_ i =

dx EE'+' /EE' fs,(E, E') dE ¢(x, E') dE'+
i =Ei

i+[ JE=_,E'

(37)

where Ei < E' < f-,i+l. The first double integral in equation (37) represents integration

over the lower triangle illustrated in the figure 1(c). The second double integral in equation

(38) represents integration over the upper triangle illustrated in the figure 1(c). Let

E' [Ei+l ,gl(E') = /E fs_(E,E')dE and g2(E') = fs,(E,E')dE (38)
=Ei J E=_t E

then employ another application of a mean value theorem for integrals to write equation

(37) in the form

-- + _qbi = 9t(Ei + Ot(Ei+l -- Ei))(_i + g2(Ei+t + 02(Ei+2 - Ei+l))_i--t + bi (39)
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and interchange the order of integration of the double integral terms in equation (36). We

then apply a mean value theorem to obtain the result

Ei+,,(x,E) dE bi = g(E,x)dE (36)
JEi



This produces the coefficients associated with the energy interval Ei to Ei+l given by

aii = gl -- _" and ai,i+l = g2 (40)

needed for the numerical integration of equations (21). In this way the diagonal and off

diagonal elements of the coefficient matrix in equation (21) are calculated.

For a compound target material, comprised of material 1 and material 2, there are

two values for a. A value al is selected for material 1 and a value oe2 is selected for the

material 2 of the compound material. In this case the equation (34) takes on the form

[0 ]+ o(E) 0(x,E) =

/_' LL (E, E')C(x, E') +dE' (41 )

/_ f,_(E, E')_(x, E') + 9(E, x)dE'

where fst and f_2 are scattering terms associated with the respective materials. These

terms are calculated in the HZETRN code. We consider two cases. The first case requires

that the E/c_2 line be above the E/c_l line.(See figure l(d)) The second case is where

a2 = 0 (the hydrogen case), and the limits of integration for the second integral go to

infinity. We consider each case separately.

For the first case we assume that c_t > c_2 > 0 and we select the exact energy spacing

dictated by the E/o_2 line. We then proceed as we did using the single shield material. We

integrate equation (41) from Ei to Ei+l and interchange the order of integration on the

pEi+t
double integral terms. Define bi = JE_ g(E, x) dE and obtain the equations

dqh
+ aePi = Ill + I12 + I21 + /22 + bi (42)

dx

where now the I21 and I22 integrals have, because of the exact spacings, the forms

U,+lfzF,I21 = fsa(Z, E') dEC(x, E') dE'
J Ei = E_ (43)

=[E,+_[E,+_I22 fs_(E E') dEC(x, E') dE'

aEi+t JE=o_2E'

Defining the terms

E !

ht(i)(E') = /E fs,(E,E')dE,
=Ei

Ei+th2<i)(E' ) = fs,(E,E')dE
J E=a2E'

i=1,2

i= 1,2

16



and using the mean value theoremfor integrals weobtain

I2t = hl(2)(Ei + 01(Ei+l -- Ei))Oi and I22 = h2(2)(Ei+l + 02(Ei+2 - Ei+l))¢#i-1

where 0_ and 02 define intermediate energy values associated with the mean value theorem.

The integrals Itl and I12 are associated with integration limits (E,E/al) and energy

intervals dictated by our selection of a2 for determining the exact energy spacings. These

integrals are associated with the trapezoidal area 1 and triangular area 2 illustrated in

the figure l(d). These areas are a fraction of the triangle area's associated with the line

E' = E/a2. These fractions are given by

__ -- _(Ei+I - Ei/c_l)(Ei+l - alEi+l)
fl ½(Ei+I- E/) 2 1

½(Ei+t - Ei)(Ei+2 - Ei+l) (44)

(Ei+l/O_ 1 - Ei+l)(Ei+l - oL1 Ei+l)
f2 =

(Ei+I - Ei)(Ei+2 - Ei+I))

and we write

Ill = flhl(1)Oi and I12 = f2h2(1)r}i+l (45)

The coefficients for our system of differential equations (22) are then given by

all =hi(2) + flhl(1) - _"
(46)

a12 =h2(2) +/2h2(1)-

For the case 2, of hydrogen, a2 = 0 and so one of the limits of integration becomes

infinite. We let al determine the energy spacing in this case. We again integrate equation

(42) over and energy interval (Ei, Ei+l) which is determined by the E t = E/o_l line. Using

the definitions given by equations (36) we integrate the equations (41) over the interval

(Ei, Ei+l) and then interchange the order of integration in the resulting double integrals

to obtain

where

. fEi+l /E _'I 1 =
J Ei :Ei

and

JE_

dr} i . *
+ _'(_i = fl + I2 + bi

dx

f_L (E, E') dEC(x. E') dE' + fs_ (E, E') dE,(x, E') dE'
JEi+L JE:c_IE'

fs2( E,E')dE¢(x'E')dE' + E fs2(E'E')dE4)(x'E')dE'
j=l dE,+j JE_
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where for all N*

We define

greater than some integer N > 0 we know that fs2(E, E') will be zero.

E I

h3(E') = fE L, (E, E')
i

E,+lh4(E') = fsl(E, E') dE,
JalE'

E'

hs(E'):£ dE,
i

E,+j+t
h_(j) = JE,÷j

E i < E' < Ei+l

Ei+1 < E' < Ei+'2

Ei < E' < Ei+l

fs2(E, E')dE, Ei+j < E_ < Ei+j+l

then we can write the coefficients associated with the system of differential equations as

ai,i =h3 -t- h5 - _"

ai,i+l =h4 -t- h6(1)

ai,i+2 =h6(2)

ai,i+3 =h6(3)

ai,i+n =h6(n)

In this way we generate a system of equations having the triangular form given by the

equations (22).

Various comparisons have been made to check the validity of the multigroup method.

The figure 9 shows low energy neutron fluence vs depth for a shield-target aluminium

water medium. Note the increase in low energy neutron production at the aluminium

water interface at a depth of lOOg/cm 2. This is due to high energy neutrons colliding with

hydrogen atoms. In these type of collisions the high energy neutrons give up over one-half

of their energy, thus increasing the low energy neutron fluence.

Using the source terms generated by the HZETRN program for an aluminium water

configuration the figures 10 through 19 result for the evaporation neutron fluence as a

function of energy for various shield thicknesses. The shield thicknesses in these figures

are !/ = 0.0, 0.3, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0, and 100.0 g/cm 2. The figures 20,21 and 22

illustrate the comparison of the old HZETRN code results with and without the addition

of the evaporation neutrons. These results are also compared with the Monte Carlo results

for fluence associated with the February 1956 solar flare data. The multigroup method for

the calculation of the low energy evaporation neutrons is computed much faster numerically

than any of the previous approximation methods. The method also produced much more

accurate results when compared to the Monte Carlo method, see for example reference

[157] and [158] of Appendix A.
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Appendix C

Green's Function Associated with the Transport of Light Ions in Matter.
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Green's Function Associated with the Transport of Light Ions in Matter.

Basic Boltzmann equation

(Change in ion flux '_ fGains within the'_ (Losses due to any'_

= - _nuclearcollisions)/wit hin a volume element) _volume element )

This gives the Boltzmann equation

[ 1 /:/-'1 0 Sj(E) + aj(E) ,j(Z',_,E) = _ dE' df_ rjkek(x, f_ , E')_" V Aj OE
k>j

where

¢j(5, _, E) is the flux of ions of type j moving in direction

having units (#particles/cm 2 - see - sr - Mev/amu)

E

Aj

o,(E)

st(E)

n (E)

J

rjk

2

P

2n

is the ion energy. (Mev/amu)

is the atomic mass of the jth type ion (amu)

is the macroscopic cross section. (cm -1)

is the average energy loss per unit length or stopping power

dE (Mev/cm).or linear energy transfer -_;.

is the slowing down range for type j ions. (cm) Rj(E) = foE
S_(E')

is the ion type.

is a unit vector in the direction of propagation.

is production cross section of type j ions with energy E and direction

by collision with type k ions of energy E / and direction _'

having units of (cm - sr - Mev/amu)

is the outward directed unit normal to boundary.

is vector to boundary point. (cm)

is the position vector to arbitray point in region (cm) :ff = p_ + xn

is the projection of 5 on _ (cm)

is the component of 5 perpendicular to _ direction.

The equation (1) is to be associated with the geometry of figure 1.

(1)
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Figure 1. General Geometry for Boltzmann's equation

Multiply the equation (1) by Sj(E) and define the quantities

¢-_(_,f), E)= Ss(E)¢j(_, fi, E)

£C_(e,_,E) : Ss(E) _ eE'
k>j

f d_' rjkCk (_, _', E')

to obtain

_.v ss(6) oAs OE + o(E) gS(e, fi, E) = C_.(e,fi, E).

Note that _-V_j -- _p is the directional derivative in the direction _ and that

(4)

o6 oR s o6 oR s ss(6)

so that the equation (4) can be written as

(8)

Introduce the characteristic variables (Oj, _j) given by the transformation equations

vs = p - n_(6) _ = p + nj(6) (6)
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where p = _ • f. Also introduce the variables

gj(_j,%) = Kj(p_. + fn, _, E) (7)

x=O

c E=O

(a)

b X

_j = -TI] I _j _J 7 "lj

I ¢ I n i
- {j (b) {J

Figure 2. Geometry for characteristic variables

By the chain rule we have

0% o7 a% o% o7 o%
- +-- and - (-l)+--

Op Oqj O_j ORj 077j i)_j

so that the equation (5) simplifies to

( )
in terms of the new variables. This equation can be integrated using the integrating factor

]exp "5"j(q',_j)dq' (9)

to obtain

kj (qj, _j) : exp[- [ a-"_(q', _j)dqqk'j (a, _j)

1_ '7_ 1_ _j+ _ exp[-_ , _(q",_j)&7"]gj(_',_j)dq'

(10)
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where a is any real number. Consequently, the solution to the equation (4) can be written

as

where

+ 7.a f('q"' p- Rj(E))_j 17( J + '/')d + _.,_,5, R_ 1( ) g,/,

(tt)

[ ]f(a,p-Rj(E))=exp - .,a aj(R_-l((J 2 ))dq' (12)

From equations (6) we find that

2p=T/j+(j and 2Rj(E)=(j-TIj (13)

t (a + _j). Observe from figure 2 that along the lineso that when r/= a we will have p =

of integration we will have _j = constant. The value of a is selected such that p_ + :g,_ =

is a point on the boundary. Thus, the vector (@)_ + £'n = F dotted with _ gives the

vah_le

a= 2_t.F-[j = 2d-p- Rj(E) (14)

where d = _. F. Note that when E = E' and r/j = r/we have from equation (13) that

2Rj(E') = _j- _' (15)

or

( -)= Rj t 2 = R-f1 p + Rj(E) r�2

and similarly by changing symbols when

E" R-_l(p+Rj(E)-r/')
= we have

2

We examine the limits of integration in equation (11)

have

2Rj(E') = p + Rj(E) - a

and from equation (14) we have

with dE' -Sj(E')- d,7' (16)
2Aj

dE"--Sj(E') dq". (17)
2Aj

and observe that when T/' = a we

(18)

2d = p + R_(E) + _.
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Adding the equations (18) and (19) we find

R_(E')+ d: p+ n_(E) (20)

or

E'= nf_(p-d+ nj(E)). (21)

Next we examine the lower limit of integration and find that when r� = p - Rj (E), then

2Rj(E') = p + Rj(E) - p + Rj(E) implies that E' = E. In the second term of equation

(11) when 71" = a we again find that E" = R-ft(p + Rj(E) -d) and when r]" = p- Rj(E)

then E"= E. Also,

I r/' 1
[((j + )= [((j + (j - 2Rj(E")) : (j - Rj(S") : p + Rj(E) - Rj(E").

Consequently, the equation (11) can be written in the form

¢--j (_,, 5, E) : F1 (E, RII(Rj (E) - d + p)¢j (F, f_, RZI(Ri (E) + O - d))

f R; I ( Rj (E)+p-d) (22)+ F1 (E, E")_j ((p + Rj (E) Rj (E"))5 + _, 5, E" dj dE"
_ - )_

where

FI(E1, E2) = exp - dE'
1 s_(E')

Define the nuclear survival probability (reference Wilson 1977) as

P_(E) : exp - s_(E') _E'

then the equation (23) can be written as

FI(E1,E2)- Pj(E2)
P_(E_)"

Then from equation (22) we can write the solution to equation (3)

Cj (Z-, 5, E) ---- SJ(EJ)Pj(EJ)¢j(F, 5, Ej)
' Sj (E)Pj (E)

' AjPj (E') dE" dS'rjk(E', E")¢k (:g5-"+
S 5 (E)Pj (E) ,

k>j

in the form

+ (Rj (E) - Rj(E'))5, 5', E")

where Ej = R-fl(p + Rj(E) - d), 2" = 2n + P_ and E' and E" have been interchanged.
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In the one-dimensionalstraight aheadapproximation _ is a unit vector in the direction

of _ with p = x, £,,_ = 6, r]j = x - Rj(E), _j = x + Rj(E) and F = 0. (i.e. the origin 0

moves to the boundary x -- 0). The equation (25) then reduces to

¢_(x,E)= Sj(Ej)Pj(E_)
S_(E)Pj(E) ¢_(0,E_)

/E_' A,P,(E') /?+ _ dE'S_(E)pj(E) ,
k>j

dE"ajk(E',E")Ok(x + Rj(E) - Rj(E'),E")

(26)

where Ej is determined from x and E such that

E_.= n;_(_•+ Rj(E)). (27)

The solution given by equation (26) can be expressed in terms of Green's function as

/o_j(x. E)= _ aj,(x. E. eo/¢k(o.Eo/eEo (2S/
k>j

where Ok(0, Eo) = fk(Eo) are boundary conditions. Substituting the assumed solution

given by equation (28) into equation (26) we obtain

aje (_, E, Eo)¢e(0,Eo)dEo = Sj (Ej)Pj (E_)
S_(E)Pj(E) aj_(O, Ej, Eo)¢_(0, Eo)dEo

Ej AJPi(E') fc¢ " ' E")
+ dE'__)l, dE ajk(E, Gk,(x+Rj(E)-Rj(E'),E",Eo)¢_(O, Eo)dEo.

k E

Note that when l = m we can equate like coefficients and find that Gjrn(X, E, E0) must

satisfy the integral equation

gj._ (z, E, Eo) =

3

k:>j

Sj(E_)Pj(Ej) Cjm(0, E_,E0)
Sj(E)Pj(E)

AjPj(E I)

dE'sj(E)Pj(E) JE' dE" ajk(E',E")Gkm(x + Rj(E)- R [E'_ E" EO)

(29)

subject to the boundary condition Gjm(0, E, E'0) = (_jrnS(E' -- E0), where the value for Ej

is determined from the inverse relation Ej = R-j 1(x q- Rj (E)). The Gym terms are written

using the Neumann expansion as a perturbation series

o_

c_m(x,zZo): _c_._(z,E,Zo) (3o)
i=0
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with leading term

G_O)m(x,E, Eo) = Sj(Ej)Pj(Ej) 6jm6(Ej - EO). (31)
sj(E)P_(z)

(o)
with Ej = R-fl(x + Rj(E)). Note that when x = 0 we have Ej = E so that Gjm(O , E, EO)

satisfies the above boundary condition. The higher order terms are determined from the

recursive definition

g_m('_+l)(z, E, E0) =

2 /?E E, dE'sj(E)PJ(E)AjPj(E') dE"ajk(E',E")G_(x + Rj(E)- Rj(E'),E",Eo). (32)
k

(n+l)(x, E, E0) = 0 for n = 0, 1, 2, .... In theand must satisfy the boundary conditions Gjm

special case n = 0 the equation (32) reduces to

G(1),
jm_X, E, E0) =

E jE dE'sj(E)Pj(E) dE dE ajk(E , ' -Sk(E")PI_(E") 6km6(Ek E,O)
k

where Rk(E_) : x + Rj(E) - Rj(E') + Rk(E"). (i.e. treat x + Rj(E) - Rj(E") as an

x* value. See for example equation (27) .) Again we observe that when x = 0 we have

Ej : E and so the boundary condition at x = 0 is satisfied.

Cross Section assumption 1

For interactions dominated by perpherial processes we use

ajm(E',E") = ajm(E")6(E' - E") (34)

so that the equation (33) becomes

G(1),
jm [,Z , E, EO ) :

_E'dE , AjPj(E') /? (35)E Sj(E)Pj(E) ,dE"ajk(E")6(E'-E") Sk(E_)Pk(E_) 6km6(E_-Eo)
k E Sk(E")Pk(E")

where

G = _[.l(z + Rj(E)- Rj(E') + Rk(E")). (36)

We integrate with respect to E" and observe that the only nonzero term occurs when

E" = E'. This gives

fE_ AjPj(E') Sk(E_)Pk(E_) 6(E_ Eo)6km (37)G(1),jm_x,E,Eo): E dz' _(E') -
k dE Sj(E)Pj(E) Sk(E')Pk(E')
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where

nk(G) =x + n_(E)- }b(E') + nk(E')

}b(S')- nk(S')=x + }b(E)- nk(G).

(38)

We know that IzjRj(E') : pkSk(E ') SO that the above can be written as

or

Thus, we can write

or

_ vk

Rj(E') I_'k- ,_jl

Rk(m I) - Pj

m I(x + n_(E)- nk( k))

(x + nj(E)- nk(G)).
(39)

Differentiate the equation (39) with respect to E_. to obtain

A t

- _ ' ' ' - "J _aE_. (40)
R'k(E')dE' [uk_ujl(-Rk(Ek))dEk or dE' luk_ujl a _

Sk (E')

The equation (35) can then be written as

G!_(x,E, Eo) : E dEik AjPj(E') o" E' ;"J Pk(EIk)'¢'_"' E0)6km
" , Sj(E)Pj(E) jk( )];.]k_ /j[ p'-_)'-'kL_k--

k kl

(41)

The only nonzero contribution comes when k = m and E_¢ = E0 and so equation (41)

reduces to

(1) f hy,_ (z, E, Eo, E') if _ (Rm (Eo) - x) < Rj (E) < _ Rm (E0) - z

Gjm(x, E, E0) = ]. 0 otherwise (42)

where

and

AjPj(E') ajm(E') uj P_(Eo)
hjm(x,E, Eo, E') = Sj(E)Pj(E) I.m - uj[ P_(E')

/

E'= R] -J- ( um
< //rn --

(43)

_1 [x + Rj(E) - R_(E0)]) . (44)
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That is, when E L = E0 and k = m we have from the equation (38) that

Rm(Eo) =x + Rj(E)- Rj(E') + Rm(E')

n_(E')- n._(E'):x + n_(E)- R._(Eo)

1- _ n_(E'):x + R_(s)- nm(Eo)

_ grn (X + Rj(E)- Rm(Eo)).

Also from the transformation equations (13) the r;k, (k, r;j, _j variables are related through

the range scale factors uj and uk, where ujRj = ukRk. This produces the relations

_k - (k = -2Rk = -2_._ = _(Vi - (_).

Then from the equations

(3 + vJ =& + _k (45)

Vj - (J =Uk( r_k -- _k) (46)
uj

we find that by adding the equation (45) and (46) we obtain

2rlj = 1 + r_k + 1 - _k

and subtracting (46) from (45) we obtain

- r/k + 1 + _k.

Interchanging j and k in the equations (47) and (48) we find that

r]k = 2uk ] r]j nL 2Uk

¢k: ?-2_ / _j + 2_,k _"

(47)

(48)

Then when r/j is a value 77' lying between the constants -(j and +(j, (See Figure 2(b)),

we will have

& = \ 2_k 2uk
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Changing k to m we find

_m=t 7D-_ )_'+ k 2,,.-, )_

Note that the boundary condition Gjm(0, E, E0) = 6jm6(E - EO) can be written in the

form

C jm( O, E, Eo) = 6jm6( R-f l ((j) - EO) = 6jm6((j -- Rj(Eo) ) : 6((m - Rm(Eo))

so that when [m = Rm(E0) we have

r] - Rm(Eo) - - _j. (49)
,'m -- ,'j l]j

Using the equations (6) and (49) we now calculate the inequality which occurs in the

equation (42). From the equation (10), with a = -(, we have the inequality -_j < 77' < rlj

which implies

-_j <r/ < rU

-x - Rj(E) < nm(Eo)- (_:+ n_(E)) < x - nj(E)
,'m - ,'5

--x < nm(EO) + Rj(E)- ,'m + ,'j (x -1-Rj(E)) < x
Vm 1 Vj i

- x-x < + 1 Rj(E) < x +
,"j Vm - -,'m - ,'j

,'ix < ,'mRm(EO)-,'jRj(E) < ,'rex

--,'jx > ,'jRj(E)-,'mRm(Eo) > -,'rnX

UmRm(EO)- ,'ix > ,'jRj(E) > ,'mRm(EO)- ,'rex

,'m,'mnm(EO)-X >Rs(E)> --(Rm(F_o)-x)
,'j ,'j

L-m (nm(E0)-x) <R_-(E) < ,'mnm(Eo)-x
,'j ,'j

X

Cross Section assumption 2

We start with equation (33) and assume crjm(E' , E' 0 has a Gaussian distribution of

the form

[ - _0"jrn (E', E") = -
ajm(E") aj v/_ -exp (E' E" Cjm) 2
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we can then write the equation (33) in the form

// /?cJ_(_,Z, eo): _ez' ,

where

with

_E"F_km (50)

AjPj(E') E") Sk(E_)Pk(E_) ,
Fjk = Sj(E)Pj(E) ajk(E', Sk(E")Pk(E") 6(Ek- Eo)

(51)

El. = Ri:_(x + R_(E)- Rj(S') + Rk(E")) (52)

The integration of (50) is over the region illustrated in the figure 3 in the limit as T ---* ec.

In expanded form the equation (50) has the form

where

G (0" E, E0)jmtx,

//2 'dE' dE" AjPf(E') Sk(Ek)Pk(Ek) ,

, Sj(E)Pj(E) ajk Sk(E,,)pk(E,,)6km6(Ek - EO).

1 [ (E'-E"-(jk) 2 ]f_ _-v_ exp 2_j_2-

(53)

E t ,m-it

E'"

E,,_E,

/

E'

Figure 3. Limits of integration for Green's function term.
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Note that for the first

Consequently,we let

integration in the E" direction we have E' is a constant.

E" + _jk - E I dE"
r= with dr- (54)

v_Ajk v_A_k

The equation (53) can then be written in the form

G(D(x R Eo)=
jm _, _ _

l;i dE'

where _ = v_Ajkr - ¢[jk -t- E I and

E'k: n-_(x + nj(E)- n_(E')- nk(_)).

AjPi(E' ) ...... 2 Sk(E'k)Pk(E_) skmS(E _ _ EO).
dr v/._S j (E)Pj (E) aJktr)e Sk('r)Pk(r)

(55)

(56)

This integral can be simplified by using one of the mean value theorems for integrals and

written as

G(1),
jm _.X, E, EO ) =

Ej Aj P_(E') Sk (E'k.)Pk(E'k. ), "E' (ST)
dE'2sj(E)Pj(E) #jk(_, ) - Eo) e -r2 dr.

>

with 7=. = v/2Ajkr * - ejk ÷ E' and

k. R[t(x + Rj(E) Rj(E')- Rk(7.)) (58)

where r* is some mean value in the interval ( _k =_, co) and when E'k. E0, then E' is a

solution of the nonlinear equation

Rk(E0) : x + R_(E)- R_(E1)- Rk(v_As*- _jk+ E') (59)

provided E < E' < Ej. Consequently, we can write

G(1)(x E, Eo)=
jrn _,

l 1 A_Pi(El) - z=o

)sm (E°)P"((_°))erfcsmi_.)Pm (_)_" ifE < E' < E_

otherwise

(6o)

where E' is a solution of the nonlinear equation (59) , r* is some mean value and erfc is

the complimentary error function.
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Ett_ w

E_t

E"=E'

E'=E E'=Ej

Figure 4. New limits of integration for Green's function term.

Another viewpoint

By interchanging the order of integration in equation (33) we obtain the limits of

integration illustrated in the figure 4 and the equation (33) can be written as

/? /; /?GJ_(z,E,Eo) = dE" dEtFjk6km + lim dE" dE'FjkSkm. (61)
T---* oc J

Observe that along the line E'=constant, we have from equation (52) that

dRk(E_)dE_ dRj(E')

dE_ dE' dE'

Ak dE_ Aj

Sk(E'k) dE' Sj(E')

or dE I _ AmSj(E')

AjSk(E'k)
dE_.

Hence when k = m and 5kin = 1, the equation (61) reduces to

G(1)(x E. E0)=
j'rr_ k

l;idE II Fjm dEIm + lim dE"
j J Era3 dj Sm (Etm) T--oo d E"J

dE"
(62)
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The limits in the above equation are determined as follows. Observe that when E' = E

and k = m the equation (52) gives

nm(E'm) =X+ nj(E) -- Rj(E) + nm(E")
(6a)

or E; n =Rml(X + Rm(E"))= Eml

and when E' = Ej and k = m the equation (52) gives

_m(E') = X+ Rj(E) - Rj(Ej) + Rm(E")

But Rj(E¢) = x + Rj(E) so that E"
from the equation (52) that

with

= E". Also when E' = E" and k = m we obtain

R,n(E_) =x + Rj(E) - Rj(E") + Rm(E")

_'j Rj (E")
nm(E') =. + n_(E) - R,(z") +

12m

Rm(E') =x + Rj(E)+ _m 1 R_(_")

or E_m =R_nl(X + Rj(E) + - 1 Rj(E")) = Era3

E' = Rj l- (x + Rj(E)- Rm(E') + Rm(E")).

Using the properties of the Dirac delta function we find that the only nonzero contribution

to the integral dE_ occurs when Elm = E0-

(62) simplifies to

G(1),
jmtx, E, E0) =

In this case the integral given by equation

where

g dE,,AmSj(E')Pj(E')ajm(E,,E,,) Pm(EO) fl
, Sj(E)Pj(E) Sm(E")Pm(E")

fT ,,AmSj(E')Pj(E') E") Pm(EO)+ lim I dE --_-'_: ajrn(E I,
T---,oo J& Sj(E)Pj(E) Sm(E")Pm(E")

z'= R;I(. + R_(_) - R=(Eo) + R=(E")) (65)

and

1 if Era3 < E0 < Emlfl = O otherwise

1 ifE" < EO < Era1f2 = 0 otherwise

(66)

(6r)
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